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Abstract
Recently, the research of any-to-any voice conversion(VC) has
been developed rapidly. However, they often suffer from unsat-
isfactory quality and require two stages for training, in which
a spectrum generation process is indispensable. In this paper,
we propose the FlowCPCVC system, which results in higher
speech naturalness and timbre similarity. FlowCPCVC is the
first one-stage training system for any-to-any task in our knowl-
edge by taking advantage of VAE and contrastive learning. We
employ a speaker encoder to extract timbre information, and a
contrastive predictive coding(CPC) based content extractor to
guide the flow module to discard the timbre and keeping the
linguistic information. Our method directly incorporates the
vocoder into the training, thus avoiding the loss of spectral in-
formation as in two-stage training. With a fancy method in
training any-to-any task, we can also get robust results when
using it in any-to-many conversion. Experiments show that
FlowCPCVC achieves obvious improvement when compared
to VQMIVC which is current state-of-the-art any-to-any voice
conversion system. Our demo is available online 1.
Index Terms: flow, voice conversion, contrastive predictive
coding, vector quantization, generative adversarial network

1. Introduction
Voice conversion is a technique for converting one speaker’s
voice identity into another one while preserving the linguistic
content. The any-to-any(one-shot) task for VC is to convert
any voice to any target speaker even unseen during training.
The converted voice should preserve target speaker identity [1],
source audio prosody [2] and accent [3]. The research of voice
conversion is becoming more and more popular owing to its
high potential for various applications, such as speaking aids
[4, 5] and style[6, 7] and pronunciation [8] conversion.

There are many works trying to decouple the linguistic
content from audio with unsupervised learning, such as Auto-
encoder-based approaches [9, 10, 11, 12] or GAN-based meth-
ods [13, 14]. However, they don’t have an explicit linguistic
monitor module to guide the training process to disentangle lin-
guistic and timbre information, which leads to degradation of
VC performance. TTS-based approaches, such as [15, 16, 17],
require explicit text labels or phone posteriorgram(PPG) fea-
tures to monitor the model to extract linguistic content informa-
tion. However, text labels are not often available at hand and
content information will be lost if the pre-trained ASR model
is not robust. In order to solve the problems mentioned above,
some approaches FragmentVC [18], VQMIVC [19] and [20]
adopt an unsupervised linguistic content learning module to ex-
tract content information. But their training and inference rely
entirely on the output of unsupervised module, this will mix

1https://aijianiula0601.github.io/FlowCPCVC

with information other than the content information. Some any-
to-any methods like [19, 21] extract timbre information by us-
ing internal learning modules, but it will get poor generalization
performance when training with small data and insufficient sim-
ilarity to target timbre that was unseen from training. Another
point is that the previous approaches require vocoders trained or
fine-tuned with first-stage model output, which causes training
and deployment inefficiency. What’s more, hidden representa-
tions will be lost when using predefined intermediate features,
such as mel-spectrogram.

In order to avoid content information mixing with other in-
formation, we restrict the output of CPC module to follow a
Gaussian distribution and adopt Flow network to fit it, rather
than rely entirely on the output of CPC. To improve timbre
similarity and generalization, we use an external pre-trained
speaker-independent encoder [22] for extracting timbre infor-
mation. Additionally, we directly incorporate the vocoder into
the voice conversion network to form a unified network, so that
the entire training requires only one stage. Finally, we put for-
ward a new framework, FlowCPCVC, which is a variational au-
toencoder(VAE) with generative adversarial learning for train-
ing. It includes five modules: timbre encoder, posterior encoder,
Flow, CPC-Net and decoder. Our paper has three main contri-
butions: 1) We proposed a novel framework for high-quality
any-to-any voice conversion. 2) The first single stage training
system, as far as we know, that combines vocoder into conver-
sion network. 3) A fancy way to implement any-to-many task
while training the any-to-any task.

The rest of this paper is organized as follows: Section 2
presents the proposed FlowCPCVC system. The details of train-
ing for any-to-many task will be shown in Section 3. Finally, the
experiments are described in Section 4.

2. Proposed approach
This section first describes the system architecture of the
FlowCPCVC, then elaborates on the knowledge to learn the lin-
guistic content with CPC-Net, and finally shows on the detail
for training.

2.1. Architecture of the FlowCPCVC system

Our framework of FlowCPCVC was inspired by a text-to-
speech framework [23]. As shown in Figure 1, FlowCPCVC
mainly includes five modules: 1) Timbre encoder, the main
function of this module is extracting timbre information for
training. 2) Posterior encoder module, force to find the implicit
representation of linear spectrogram which is sent to decoder
to reconstruct the waveform. 3) Flow module, aim to remove
the timbre information and keep the linguistic information. 4)
CPC-Net module, which is a framework for extracting the lin-
guistic information through unsupervised comparative learning
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Figure 1: The architecture of FlowCPCVC. (a) Timbre vectors from speaker encoder or timbre emebedding table. (b) Overall proce-
dures for training. (c) Architectural components of CPC-Net.

[20, 24], aim to extract linguistic information from audio and
monitor the output of flow module to represent linguistic infor-
mation. 5) Decoder module, which inherit from hifigan [25].

FlowCPCVC can be expressed as conditional VAE,
which is a generative model in the form of pθ(x|c) =∫
p(z)pθ(x|z)dz, where c is for linguistic information from

CPC-Net, p(z) is a prior distribution over latent variables z and
pθ(x|z) is the likelihood function of a data point x given la-
tent variables z which can be considered as a decoder. It is
parameterized by a neural network θ. Since the true posterior
pθ(z|x) over the latent variables of a VAE is usually analyti-
cally intractable, we approximate it with a variational distribu-
tion qϕ(z|x), which can be viewed as an encoder. Parameters
θ and ϕ can be optimized by maximizing the variational lower
bound, also called the evidence lower bound (ELBO), of the
intractable marginal log-likelihood of data log pθ(x|c):

logpθ(x|c) ≥ Eqθ(z|x)[log
pθ(x, z)

qϕ(z|x)
]

= Ez∼qθ(z|x)[logpθ(x|z)− log
qϕ(z|x)
pθ(z)

]

= Ez∼qθ(z|x)[logpθ(x|z)]−KL(qθ(z|x)||pθ(z))
(1)

The training loss is then the negative ELBO, which can
be viewed as the sum of reconstruction loss Lrecon =
−logpθ(x|z) and KL divergence loss Lkl = logqϕ(z|x) −
logpθ(z), where z ∼ qϕ(z|x) = N(z;µϕ(x, σ(x))), x = xlin.

Timbre Encoder θs: 256-dim timbre vectors come from
Speaker Encoder or Timbre Embedding Table. We extract the
timbre vector from Speaker Encoder for any-to-any task. The
architecture of Speaker Encoder comes from voxceleb-trainer
[22], which is used for the task of independent speaker veri-
fication. We choose the ResNetSE34V2 net for our task and
trained the model with 30 thousand speakers which include Chi-
nese, English and Bengal. The EER of pretrained model in test
dataset is 0.2%.

Posterior Encoder θ(x): The posterior Encoder com-
presses the linear spectrogram to implicit representation
z, which approximately equivalent to posterior distribution
pθ(z|x). The output of posterior encoder is send to decoder

and flow.
Flow θ(z): To increase the expressiveness of the prior dis-

tribution for generating the realistic samples, which has been
proved in [23], and better to fit the implicit phonetic information
of CPC output, we apply the normalizing flow fθ [26], which
allows an invertible transformation of a simple distribution into
a more complex distribution following the rule of change-of-
variables, on top of the factorized normal prior distribution:

pθ(z|c) = N(fθ(z);µθ(c);σθ(c))|det∂fθ(z)
∂z

| (2)

where c is content repressetation extract from cpc-Net.
CPC-Net θc: The task of contrastive predictive cod-

ing(CPC) network, shortened to CPC-Net, is to extract the lin-
guistic content from speech. As shown in figure 1 part c. The
CPC-net includes h-net,VQ [20] and g-net modules. We use
the mel-spectrogram as acoustic feature and randomly select T
frames from each utterance for training. The kth frame is de-
noted as Xk = Xk,1, Xk,2...Xk,T . The h-net takes in Xk to get
Zk, the VQ quantifies the Zk to Ẑk and the g-net transforms Ẑk

to R̂k. Finally, we use an upsample Conv layer to turn R̂k to
Gaussian distribution, which is expressive to phonetic represen-
tation. This is inspired by the use of GMM to model phonemic
information in speech recognition.

h-net: The h-net contains 2 layers and one block which re-
peated 4 times. It first uses one Conv1d Layer with a stride of
2 to reduce the T frames to T/2 frames, then sends them to four
repeated blocks, which contains layer normalization, 512-dim
linear layer, and the Relu function as activation. The outputs
Zk of blocks are sent to a linear layer.

VQ-operation: VQ [20] operation discretizes the Zk with
a trainable codebook B, which has 512 64-dim learnable vec-
tors, into Ẑk = {Ẑk,1, Ẑk,2, ..., Ẑk,T/2}, where ẑk,t ∈ B is
vector closest to zk,t. It learns representations that remove non-
essential details in Zk, making Ẑk to be related with underlying
linguistic information. The loss of VQ [20]:

LV Q =
2

KT

K∑

k=1

T/2∑

t=1

∥zk,t − sg(ẑk,t)∥22 (3)
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Figure 2: Inference of FlowCPCVC.

where sg(.) denotes the stop-gradient operator.
g-net: The g-net is a 256-dim unidirectional RNN layer,

which encourages the Ẑk to capture local structures Rk =
{rk,1, rk,2, ..., rk,T/2}. Given the rk,t, the model is trained to
distinguish a positive sample ẑk,t+m(m ∈ [1...6]) from nega-
tive samples drawn from the set Ωk,t,m(|Ωk,t,m| = 10) in the
future by minimizing the InfoNCE loss [27]:

LCPC = − 1

KT ′M

K∑

k=1

T
′

∑

t=1

M∑

m=1

log[
exp(ẑTk,t+mWmrk,t)∑

z̃∈Ωk,t,m
exp(z̃TWmrk,t)

]

(4)
where T

′
= T/2 − M,Wm(m = 1, 2, ...M) is train-

able projection matrix. The negative samples are selected from
the same utterance as positive samples. Finally, a transposed
Conv1d layer upsamples the outputs of g-net to T frames and
calculates the mean µθ(c) and variance σθ(c) of each frame.

Decoder: The decoder comes from HiFi-GAN[25]. We use
mel-spectrogram instead of a raw waveform, denoted by xmel,
to caculate the reconstruction loss for target data. We upsam-
ple the latent variables z to the waveform domain ŷ through a
decoder and transform ŷ to the mel-spectrogram domain x̂mel.
Then the L1-norm between the predicted and target is used as
the reconstruction loss:

Lrecon = ∥xmel − x̂mel∥1 (5)

This can be viewed as maximum likelihood estimation assum-
ing a Laplace distribution for data distribution and ignoring
constant terms. We define the reconstruction loss in the mel-
spectrogram domain to improve the perceptual quality by using
a mel-scale that approximates the response of the human audi-
tory system. Note that the mel-spectrogram estimation from a
raw waveform does not require trainable parameters as it only
uses STFT and linear projection onto the mel-scale. Further-
more, the estimation is only employed during training, not infer-
ence. In practice, we do not upsample the whole latent variables
z but use partial sequences as an input for the decoder, which is
the windowed generator training used for efficient end-to-end
training [23].

2.2. Training objectives

We trained the model as shown in figure 1. Similar to the learn-
ing TTS system [23], we adopted adversarial training in our
learning system. The HiFi-GAN [25] generator was used as a
decoder, which takes the outputs of Posterior Encoder as input.
A discriminator D is added to distinguish between the output
generated by the decoder G and the ground truth waveform y,
while the generator tries to fool the discriminator by generating
the predicted speech ŷ that similar to the real speech y. Two
types of losses are successfully applied to the decoder; the least
squares loss function [28] for adversarial training, and the addi-
tional feature matching loss [29, 30] for training the generator:

Ladv(D) = E(y, z) = [(D(y)− 1)2 + (D(G(z))2)]

Ladv(G) = Ez[(D(G(z))− 1)2]

Lfm(G) = E(y,z)[
T∑

l=1

1

Nl
∥ Dl(y)−Dl(G(z)) ∥1]

(6)

where T denotes the total number of layers in the discrimina-
tor and Dl outputs the feature map of the l-th layer of the dis-
criminator with Nl number of features. It is important to note
that feature matching loss can be regarded as reconstruction loss
measured in the hidden layer of the discriminator and seen as an
alternative to the element reconstruction loss for VAE [29].
The total loss for training our conditional VAE can be expressed
as follows:

Lvae = Lrecon +Lkl +Ladv(G)+Lfm(G)+LV Q +LCPC

(7)

3. Methods for any-to-many task
Although any-to-any task has covered the efficacy of any-to-
many, we still want to implement the any-to-many task, that
the information of timbre learned from various audios for one
speaker is more stable and robust. As shown in figure 1, in order
to combine any-to-any and any-to-many tasks for simultaneous
training, we created a fixed-size embedding table in the model
to learn a stable timbre information for target speakers. During
the training, a batch of timbre vectors is divided into two parts,
of which one half is obtained from the Timbre Embedding Ta-
ble, while another half is extracted from the Speaker Encoder.
Merged into a batch and sent to Posterior Encoder and Flow
modules.

In the phase of inference, as shown in Figure 2, if any-to-
any task is required, the timbre vectors for source and target are
obtained from the Speaker Encoder. If we need to do any-to-
many tasks, the timbre vector for the source audio is retrieved
from the Speaker Encoder, while the target timbre that we want
to achieve is retrieved from the Timbre Embedding Table. The
whole process of inference is as follows: Both the linear spec-
trum and the source timbre vector are fed to the posterior en-
coder, and the output of posterior encoder is sent to the flow
module. The output of flow is sent to the reversed flow module
together with the target timbre vector, and its output is sent to
the decoder. Finally, we will get the audio of the target timbre.

4. Experiments
4.1. Datasets

We conducted experiments on VCTK dataset [31] with 110 En-
glish speakers. We selected 90 speakers for training and 20 for
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testing following the setting of VQMIVC [19]. To verify the
effect of one-shot VC, we treated testing speakers as unseen
speakers. The audio’s format of VCTK is 16-bit PCM with
sample rate of 44 kHz. We downsampled the audio to 22 kHz.

4.2. Preprocessing

The linear spectrograms can be obtained from raw waveforms
through the Short-time Fourier transform (STFT), used as input
of the posterior encoder for acoustic features extraction. We
used 80- dimensional mel-scale spectrograms for reconstruction
loss and as input of CPC-Net. We set FFT size, window size and
hop size of the transform to 1024, 1024 and 256.

4.3. Training

For the FlowCPCVC network training, we use Adam opti-
mizer[10] with β1 = 0.8, β2 = 0.99 and weight decay
λ = 0.01. The learning rate decay is scheduled by a 0.9991/8

factor in every epoch with an initial learning rate of 2 × 10−4.
Following previous work [32], we adopt the windowed gener-
ator training, a method of generating only a part of raw wave-
forms to reduce the time and memory usage during training.
We randomly extract segments of latent representations with a
window size of 32 to feed to the decoder instead of feeding en-
tire latent representations and also extract the corresponding au-
dio segments from the ground truth raw waveforms as training
targets. We use mixed precision training on 4 NVIDIA V100
GPUs. The batch size is set to 40 per GPU and the model is
trained up to 82k steps. We compare our method with Frag-
mentVC [21], MediumVC [33] and VQMIVC [19] where all
models were trained and tested under the same data partitioning
rules.

4.4. Experimental results and analysis

4.4.1. Content preservation and F0 variation consistency

To evaluate the retention degree of linguistic information and
intonation information from original audio, we tested the CER
and WER of converted audio with the publicly released Wenet
ASR system [34]. To evaluate the similarity of intonation, we
extract the f0 of audio and calculate the Pearson correlation co-
efficient(PCC) between the source and converted audio. The
higher F0-PCC denotes that the converted voice has better sim-
ilarity of intonation to source voice. For each speaker in the test
dataset, we randomly select one audio, half of the twenty au-
dios are used as the source, and half are used as the target, then
we get 100 converted pairs after pairwise combination. The re-
sults for different methods are shown in Table 1 that our system
is better in retention of linguistic content and more similar to
source voice in intonation with higher PCC value.

Table 1: ASR and F0-PCC results for one-shot VC

Methods CER WER F0-PCC
origin 3.5% 9.0% 1.0

FragmentVC 86.6% 91.5% 0.231
MediumVC 15.2% 30.3% 0.695
VQMIVC 14.2% 29.1% 0.792

our 13.8% 28.4% 0.870

4.4.2. Speech naturalness and Timbre similarity

In order to measure the naturalness and timbre similarity, a com-
parative test was designed, and the MOS score of the converted
audio was performed manually. We asked 20 native English
speakers to rate the audios. The MOS has 5 levels: 1-bad, 2-
poor, 3-fair, 4-Good, 5-excellent. We separated the data into
different genders in the test dataset, randomly selected 5 clips
for each speaker, and tested in female to male(F2M), male to
female(M2F), female to female(F2F) and Male to male (M2M).
The results are shown in Table 2, which show that our method
has advantages in both naturalness and timbre similarity.

Table 2: The MOS of Speech naturalness and speaker similarity

Method MOS SIMF2M M2F F2F M2M
Ground truth 4.66 -
FragmentVC 1.41 1.62 1.81 1.76 2.03
MediumVC 3.25 3.11 3.41 3.51 3.05
VQMIVC 3.42 3.23 3.74 3.85 3.81

our 4.08 4.11 4.28 4.23 4.24

4.4.3. Contrast of emotional conversion effect

A good voice conversion system can not only change the timbre
of common pronunciation, but also the emotional voice, such as
ah, um, loud cry and so on. In order to verify the conversion
effect of our voice conversion system for such unusual pronun-
ciation, we specially selected 50 audio tones containing mood
sounds for conversion test. Compared with other systems, we
use the same grades for MOS as in Experiment 2. The compar-
ison result is shown in Table 3. We can see that our method has
a better conversion effect for such voice.

Table 3: The MOS of Speech naturalness and speaker similarity
for emotional audios

Method MOS SIM
Ground truth 4.64 + 0.8 -
FragmentVC 1.81 + 0.10 1.54 + 0.11
MediumVC 2.20 + 0.12 2.04 + 0.12
VQMIVC 2.94 + 0.15 3.34 + 0.14

our 3.57 + 0.11 3.63 + 0.09

5. Conclusion
In this paper, we proposed a new framework for voice conver-
sion system, which we call FlowCPCVC. In order to preserve
the source linguistic information and improve naturalness, we
adopted Gaussian distribution of CPC-Net outputs to monitor
the flow module to remove timbre and preserve the linguistic
information to generate more natural audio. To increase timbre
similarity, we introduced a robust speaker-independent encoder
to assist training. Additionally, our model is the first single stage
training voice conversion system for one-shot task, unlike other
models that require separated training of acoustic models and
vocoder. In the future, we will try to design a timbre extrac-
tion model due to that ResNetSE34V2 is designed for speaker
recognition rather than timbre extraction, or remove the Speaker
Encoder for any-to-many task to create a more lightweight VC
network.
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